NDT SUPPLY.COM, INC.
7952 Nieman Road
Lenexa, KS 66214-1560 USA PHONE: 001-913-685-0675
FAX: 001-913-685-1125
E-MAIL: SALES@NDTSUPPLY.COM WWW.NDTSUPPLY.COM
TABLE OF CONTENTS
Penetrameters are designated as I.Q.I.'s, (Image Quality Indicators).
I.Q.I. INFORMATION ..... 1 THRU 5
I.Q.I. SETS \& CASES ..... 6,7
NOTCHING SYSTEM ..... 8
I.Q.I. SPECIFICATIONS:
ASME SEC. I, III, V, VII, SE 1025 .....  9
ASTM-E-1025 ..... 10
ASTM-E-1742 ..... 11
T9074-AS-GIB-010/271 ..... 12
NAVSEA 250-1500-1 ..... 13
MIL-R-1 1471 (ORD) ..... 14
API 1104 ..... 15,16
API 5L ..... 17, 18
API 650 ..... 18
AWS D1.1-96 (AMERICAN WELDING SOCIETY) ..... 18
AWWA D1OO-96 (AMERICAN WATER WORKS ASSOC.) ..... 18
ASTM-E-747 WIRE TYPE I.Q.I.'S ..... 19
EN 462-1 WIRE TYPE I.Q.I.'S ..... 20
PRATT \& WHITNEY AIRCRAFT
ASTM-E-1742; XRM-1; P\&WA TAM I.Q.I.'S ..... 22, 23, 24
CONTRAST SENSITIVITY GAGES - ASTM E 1647. ..... 24
MOUNTING BLOCKS ..... 25
SHIMS ..... 26
COMPARATOR SHIMS ..... 26
NAVSHIP SLOTTED SHIMS ..... 26
STEP WEDGES ..... 27
LEAD FIGURES ..... 28

## IMAGE QUALITY INDICATORS

RAY-CHECK precision I.Q.I.'s rigidly conform to and exceed requirements of each code and MIL-spec. Lead figures identifying the I.Q.I. size and in the case of some MIL specs, the material, are affixed to the I.Q.I. Each I.Q.I. is chemically etched identifying the material and specification.

Sharp, smooth edges with accurate, perfectly spaced drilled and reamed holes, ultrasonically cleaned, give the technician every advantage in obtaining clear, well defined images on the radiograph. Copies of material certifications are available on request. All I.Q.I.'s are accompanied by a certificate of conformity. Our quality control system complies with ISO 9001:2000 (replaces MIL-I-45208A) and ANSI-NCSL-Z540 (replaces MIL-STD-45662-A) and is traceable to the National Institute of Standards and Technology (NIST).

Inspection systems are audited and certified by Lockheed-Martin.

## CALIBRATION

I.Q.I.'s may be serialized and calibrated resolving to the $4_{\text {th }}$ decimal, for a nominal charge.

## ENCAPSULATION

I.Q.I.'s may be encapsulated in clear, thin walled plastic if requested. This leaves I.Q.I.'s hermetically sealed by radio frequency sealing. Cost is nominal.


## IMAGE QUALITY INDICATORS

## STOCK I.Q.I.'S

Stock I.Q.I.'s are available for prompt shipment. Stock IQI's are standard sizes within each code and of
the material listed below. STOCK I.Q.I. CODES AND MIL-SPECS

ASME-SE- 1025 T9074-

AS-GIB-0 10/271

MIL-R-1 1471 API
(All Codes) ASTM-E-

1742 NAVSEA 250-

1500-1

STOCK I.Q.I. MATERIALS
ALUMINUM (6061)
BRASS

CUPRO-NICKEL (70-30)

MAGNESIUM (AZ-31)

STEEL (1018)

TITANIUM (CP and 6/4)
HAYNES 25 (COBALT)
HASTELLOYS (B, C, X)

ASTM-E 1025 (Plaque type)
ASTM-E-747 (Wire type)
EN 462-1(European wire type)
AWS
AWWA

PRATT \& WHITNEY TAM's

ALUMINUM- BRONZE

COPPER

INCONEL 600

MONEL 400
STAINLESS STEEL (304)
ZIRCONIUM

COMPOSITES

## I.Q.I SIZES

In accordance with MIL-specs, the size of the I.Q.I. is identified by two (2) lead numbers cemented to the I.Q.I. These lead numbers represent the two (2) significant digits of the decimal equivalent of the maximum thickness of section to be radiographed. In the case API, ASME, ASTM, and AWS codes, these are identified by a number representing the thickness of the I.Q.I. itself. Thus an I.Q.I. with a thickness of $.005 "$ is identified as a \#5.

## INCREMENTS

I.Q.I.'s are manufactured in the following increments:

1/16" thru 1" ..................................................... 1/16"
1" thru 2 1/2" .................................................... 1/8"
$21 / 2^{\prime \prime}$ and larger.....................................................1/4"

## COLOR CODE

I.Q.I. materials are indicated by color code:

Stainless Steel .................................................. Red
Steel................................................................. Orange
Aluminum ....................................................... Blue
Magnesium...................................................... Yellow
Nickel, and Nickel based alloys ........................ Green
(Inconel, Hastelloy, Monel, etc.)
Copper, Cupro-Nickel ........................................ Copper
Brasses, and Bronzes........................................ Silver
Cobalt, Titanium, Zirconium, Niobium (Columbium) ................... Brown

## SPECIAL I.Q.I.'S

Special I.Q.I.'s are regularly manufactured to customers' specifications. Quotations will be made when drawings or specifications are received. Delivery of special I.Q.I.'s is usually within ten (10) days of the order.

## ADDITIONAL MATERIALS \& SPECIFICATIONS

I.Q.I. 's conforming to specifications, or of materials not included in the lists of stock items on Page 1, are made to order as required. I.Q.I.'s of nearly any known material and to any U.S. specification can quickly be manufactured in our shops.
I.Q.I.'s can be readily manufactured from the following materials:

NIOBIUM (COLUMBIUM)
HERCULOY
MAG-THORIUM
NICKEL ALLOYS
RENE 41
TANTALUM WASPALOY

HAYNES COBALT ALLOYS

HAFNIUM
LEAD (PURE)
MOLYBDENUM

PHOSPHOR-BRONZE
(VALVE BRONZE)
SILVER
STEEL (MARAGING)
ZIRCALOY (2, and 4)

In addition to those materials listed above, I.Q.I.'s of unusual materials can be manufactured from materials, both metals and non-metals, of which some stock is maintained. However, when I.Q.I. 's are to be of very unusual material it is usually more advantageous to the customer to supply such material.

Most specifications do not require I.Q.I.'s to be of the identical alloy as that of the object being radiographed. It is usually only necessary that they be of the same material, having approximately the same density and radiation absorption.

## MATERIALS IDENTIFICATION

Most codes and specifications require that I.Q.I. 's, of all materials, shall have suitable permanent identification marks so as to be distinguished with respect to materials. In some cases such as ASTM-E1742 and NAVSEA, it is also required that the I.Q.I. be identified as to the predominant constituent of the I.Q.I., by utilizing the chemical symbol. In the case of ASTM E 1742, the material is to be identified by two lead letters permanently affixed to the I.Q.I.

# CHEMICAL SYMBOLS USED FOR MATERIAL IDENTIFICATION 

## STOCK MATERIAL

| AB: | ALUMINUM BRONZE | AL: | ALUMINUM |
| :--- | :--- | :--- | :--- |
| BR: | BRASS | CO: | HAYNES 25 |
| CU: | COPPER | CU: | CUPRO NICKEL |
| CU: | PHOSPHOR BRONZE | FE: | STEEL |
| IN: | INCONEL | MG: | MAGNESIUM |
| NI: | NICKEL | NI: | HASTELLOYS (B,C,X) |
| NI: | MONEL | SS: | STAINLESS STEEL |
| TI: | TITANIUM |  |  |

## SPECIAL AND EXOTIC MATERIALS

AG: SILVER
HE: HERCULOY
MO: MOLYBDENUM
NI: RENE 41
PB: LEAD
ZR: ZIRCONIUM

CB: COLUMBIUM (NIOBIUM)
HF: HAFNIUM
MT: MAGNESIUM - THORIUM
NI: WASPALOY
TA: TANTALUM
ZR: ZIRCALOY

In order to expedite shipment and minimize delay of any order, the following information must be furnished at the time the order is received: Code or Spec; Material; Size; and Quantity.

## I.Q.I.'S IN SETS

## ASTM-E- 1742

Two standard I.Q.I. sets are available from stock.
Set "A" consists of twenty-five I.Q.I.'s and contains the following sizes:
$.25, .31, .37, .43, .50, .56, .62, .68, .75, .81, .87, .93$, $1.0,1.1,1.2,1.3,1.5,1.6,1.7,1.8,2.0,2.1,2.2,2.3,2.5$

Set "B" consists of eleven I.Q.I.'s and contains the following sizes:

$$
2.7,3.0,3.2,3.5,3.7,4.0,4.5,5.0,6.0,7.0,8.0
$$

## ASTM E-1025 and ASME-SE-1025

Two standard I.Q.I. sets are available from stock.
Set "A" consists of twenty-five I.Q.I.'s and contains the following sizes:
\#5, \#6, \#7, \#9, \#10, \#11, \#12, \#13, \#15, \#16, \#17, \#18, \#20, \#22, \#25, \#27, \#30, \#32, \#35, \#37, \#40, \#42, \#45, \#47, \#50

Set "B" consists of eleven I.Q.I.'s and contains the following sizes:
\#55, \#60, \#65, \#70, \#75, \#80, \#90, \#100, \#120, \#140, \#160

NAVSEA T9074-AS-GIB-010/271

## NAVSHIPS 250-1500-1

Two standard I.Q.I. sets are available from stock.
Set "A" consists of twenty-eight I.Q.I.'s and contains the following sizes:

$$
\begin{aligned}
& .25, .30, .35, .40, .45, .50, .55, .60, .65, .70, .75, .80, .85, .90, .951 .0,1.1,1.2,1.3 \text {, } \\
& 1.5,1.6,1.7,1.8,2.0,2.1,2.2,2.3,2.5
\end{aligned}
$$

Set "B" consists of eleven I.Q.I.'s and contains the following sizes:

$$
2.7,3.0,3.2,3.5,3.7,4.0,4.5,5.0,6.0,7.0,8.0
$$

## I.Q.I. CASES

RAY-CHECK I.Q.I. cases are available for the I.Q.I.'s you now have, and are engineered to prevent loss and damage. They are constructed of wood with a hand-rubbed finish. Each case is provided with shock absorbing sponge rubber in the lid to keep I.Q.I.'s firmly in place.


## NOTCHING SYSTEM

This notching system applies to ASME-SE-1025; ASTM-E-1025; NAVSEA T9074 -AS-GIB-010/271; and NAVSEA 250-1500-1 specs.


FIG. 2 RECTANGULAR IQI NOTCH IDENTIFICATION AND MATERIAL GROUPING

## ASME SEC. V SE 1025

All ASME sections reference ASME Sec. V SE 1025 (identical to ASTM-E-1025).

## IDENTIFICATION:

A notching system for eight grades of I.Q.I.'s is used for identification of rectangular I.Q.I.'s on the radiograph. These grades are grouped according to their increasing attenuation. The thickness of the I.Q.I. is identified by lead numbers. The I.Q.I.'s are further identified by electrochemically etching the material, and spec.

## I.Q.I. SELECTION:

I.Q.I. selection for use in accordance with ASME Sec. V is determined using table T-276 in article 2 , shown below.

|  |  | E T-276 <br> LECTION |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Nominal Single-Wall Material Thickness Range, in. | IQI |  |  |  |
|  | Source Side |  | Film Side |  |
|  | Hole-Type <br> Designation | Wire-Type Essential Wire | Hole-Type Designation | Wire-Type Essential Wire |
| Up to 0.25, incl. | 12 | 5 | 10 | 4 |
| Over 0.25 through 0.375 | 15 | 6 | 12 | 5 |
| Over 0.375 through 0.50 | 17 | 7 | 15 | 6 |
| Over 0.50 through 0.75 | 20 | 8 | 17 | 7 |
| Over 0.75 through 1.00 | 25 | 9 | 20 | 8 |
| Over 1.00 through 1.50 | 30 | 10 | 25 | 9 |
| Over 1.50 through 2.00 | 35 | 11 | 30 | 10 |
| Over 2.00 through 2.50 | 40 | 12 | 35 | 11 |
| Over 2.50 through 4.00 | 50 | 13 | 40 | 12 |
| Over 4.00 through 6.00 | 60 | 14 | 50 | 13 |
| Over 6.00 through ${ }^{-1} 8.00$ | 80 | 16 | 60 | 14 |
| Over 8.00 through 10.00 | 100 | 17 | 80 | 16 |
| Over 10.00 through 12.00 | 120 | 18 | 100 | 17 |
| Over 12.00 through 16.00 | 160 | 20 | 120 | 18 |
| Over 16.00 through 20.00 | 200 | 21 | 160 | 20 |

See Page 20, Table 1, WIRE IQI SIZES AND WIRE IDENTITY NUMBERS to select wire I.Q.I. as determined by essential wire required.

## ASTM-E-1025



## IDENTIFICATION:

A notching system for eight grades of I.Q.I. 's is used for identification of rectangular I.Q.I. 's on the radiograph. These grades are grouped according to their increasing attenuation. The thickness of the I.Q.I. is identified by lead numbers. The I.Q.I.'s are further identified by electrochemically etching the material, and spec.

## GENERAL DIMENSIONS:

| SIZE | LENGTH | WIDTH |
| :--- | :--- | :--- |
| $\# 50$ and smaller | $11 / 2^{\prime \prime}$ | $1 / 2^{\prime \prime}$ |
| over \#50 to \#160 incl. | $21 / 4^{\prime \prime}$ | $1^{\prime \prime}$ |

Over \#160 Diameter is equal to 4 x thickness
(Number of holes: 2)

## THICKNESS:

I.Q.I. thickness is determined by image quality level required using the table below. The industry standard is $2 \%$ of the thickness to be radiographed, to the nearest fractional size.

Minimum thickness: .005"
TABLE 1
TYPICAL IMAGE QUALITY LEVELS

| Standard Image Quality Levels |  |  |  |
| :---: | :---: | :---: | :---: |
| Image Quality Levels | IQI Thickness | Minimum Preceptible |  |
|  |  |  |  |
|  |  | Hole | Equivalent IQI |
|  |  | Diameter | Sensitivity, $\%^{B}$ |
| 2-1 $T$ | 1/50 (2\%) of Specimen Thickness | 1 T | 1.4 |
| 2-2 $\mathrm{T}^{\text {a }}$ |  | $2 T$ | 2.0 |
| 2-4T |  | $4 T$ | 2.8 |
|  | Special Image Quality | evels |  |
| 1-1 $T$ | 1/100 (1\%) of Specimen Thickness | 1 T | 0.7 |
| $1-2 T$ |  | $2 T$ | 1 |
| 4-2T | 1/25 (4\%) of Specimen Thickness | $2 T$ | 4 |

${ }^{4}$ For Level $2-2 T$ Radiologic - The $2 T$ hole in an IQI, $1 / 50(2 \%)$ of the specimen thickness, is visible.
${ }^{8}$ Equivalent IQI sensitivity is that thickness of the IQI, expressed as a percentage of the part thickness, in which the $2 T$ hole would be visible under the same conditions.

| Small hole diameter: | $1 \times$ Thickness | (min: .010 ") |
| :--- | :--- | :--- |
| Medium hole diameter: | $2 \times$ Thickness | (min: $\left..020^{\prime \prime}\right)$ |
| Large hole diameter: | $4 \times$ Thickness | (min: $\left..040^{\prime \prime}\right)$ |

## ASTM-E-1742



## IDENTIFICATION:

Lead figures identify the thickness of the material to be radiographed on one end, and the material of the I.Q.I. on the other end.

## GENERAL DIMENSIONS:

| SIZE | LENGTH | WIDTH |
| :--- | :--- | :--- |
| $2.5^{\prime \prime}$ and smaller | $2^{\prime \prime}$ | $1 / 2^{\prime \prime}$ |
| $2.6^{\prime \prime}$ to $8^{\prime \prime}$ | $2.850 \prime$ | $1 "$ |
| Over $8 "$ |  |  |
|  | Diameter equal to $4 \times$ Thickness <br> (Number of holes: 2) |  |

## THICKNESS:

$2 \%$ of the thickness of the material to be radiographed, to the nearest fractional size.

Minimum thickness: .005"
HOLE SIZES:

| Small hole diameter | $1 \times$ Thickness (min: $.010^{\prime \prime}$ ) |
| :--- | :--- |
| Medium hole diameter | $2 \times$ Thickness (min: $\left..020^{\prime \prime}\right)$ |
| Large hole diameter | $4 \times$ Thickness (min: $\left..040^{\prime \prime}\right)$ |

## NAVSEA T9074-AS-GIB-01 0/271



## IDENTIFICATION:

A notching system for eight grades of I.Q.I. 's is used for identification of rectangular I.Q.I.'s on the radiograph. These grades are grouped according to their increasing attenuation. Lead figures identify the thickness of the material to be radiographed. The I.Q.I. is further identified by electrochemically etching the material and the spec.

## GENERAL DIMENSIONS:

## SIZE

$2.5 "$ and smaller
2.6 " to $8^{\prime \prime}$

Over 8"

LENGTH
1 1/2"
$21 / 4 "$

WIDTH
1/2"
$1^{\prime \prime}$

Diameter equal to 4 x Thickness (Number of holes: 2)

## THICKNESS:

$2 \%$ of the thickness of the material to be radiographed, to the nearest fractional size.

Minimum thickness: .005"

## HOLE SIZES:

| Small hole diameter | $1 \times$ Thickness | (min: $.010 "$ ) |
| :--- | :--- | :--- |
| Medium hole diameter | $2 \times$ Thickness | (min: $.020^{\prime \prime}$ ) |
| Large hole diameter | $4 \times$ Thickness | (min: $.040^{\prime \prime}$ ) |

## NAVSEA 250-1500-1



## IDENTIFICATION:

A notching system as listed below is used for identification of rectangular I.Q.I.'s on the radiograph. These grades correspond with the notching system listed before and are grouped according to their increasing attenuation. Lead figures identify the thickness of the material to be radiographed. The I.Q.I. is further identified by electro-chemically etching the material and the spec.

## NOTCHING SYSTEM:

Group 1 Steel, Stainless steel, Manganese Aluminum-
Group 2 Bronze; Nickel-Aluminum-Bronze Inconel
Group 3 Nickel, Copper, Monel, Cupro-Nickel
Group 4 Tin Bronze, Valve Bronze
Group 5

No notches 1 notch on end 2 notches on end
1 notch on top edge
2 notches on top edge

## GENERAL DIMENSIONS:

SIZE
2.5 " and smaller
2.6 " to $8 "$

Over 8"

LENGTH
1 1/2"
$21 / 4 "$
Diameter equal to 4 x Thickness
(Number of holes: 2)

## THICKNESS:

$2 \%$ of the thickness of the material to be radiographed, to the nearest fractional size.

Minimum thickness: .005"

HOLE SIZES:

Small hole diameter
Medium hole diameter
Large hole diameter
$1 \times$ Thickness (min: .010")
$2 \times$ Thickness (min: .020")
4 x Thickness (min: .040")

## U. S. ARMY ORDNANCE MIL-R-1 147 1-3

## GENERAL DIMENSIONS:

| SIZE | LENGTH | WIDTH |
| :--- | :--- | :--- |
| $2.5^{\prime \prime}$ and smaller | $11 / 2^{\prime \prime}$ | $1 / 2^{\prime \prime}$ |
| $2.6^{\prime \prime}$ to $8^{\prime \prime}$ | $21 / 4^{\prime \prime}$ | $1^{\prime \prime}$ |

Over 8" Diameter equal to 4 x Thickness
(Number of holes: 2)

## THICKNESS:

$2 \%$ of the thickness of the material to be radiographed, to the nearest fractional size.

Minimum thickness: .005"

HOLE SIZES:

| Small hole diameter | $1 \times$ Thickness (min: .010") |
| :--- | :--- |
| Medium hole diameter | $2 \times$ Thickness (min: .020") |
| Large hole diameter | $4 \times$ Thickness (min: .040") |

## API 1104 PIPELINE

API 1104 specifies the use of I.Q.I.'s conforming to requirements of either ASTM-E-142*, or "figure 20 " for hole type I.Q.I.'s, or ASTM-E-747 for wire type I.Q.I.'s. I.Q.I. selection is determined by the set of requirements to be used as shown in tables 5,6 , and 7 .
*ASTM-E-1025 supersedes ASTM-E-142 for I.Q.I. design.

## GENERAL DIMENSIONS:

SIZE
\#50 and smaller
Over \#50 to \#160

LENGTH
1 1/2"
$21 / 4 "$

WIDTH
1/2"
1"

Over \#160
Diameter equal to 4 x Thickness (Number of holes: 2)
Table 6 -Thickness of Pipe Versus Thickness of Penetrameter ${ }^{\circledR}$


[^0]

Notes:

1. $T=$ thickness of penetrameter; Diameter $A=2 T$, Diameter $\mathrm{B}=T$, Diameter $C=4 T$
2. No hole need be less than $K_{6}$ inch ( 1.59 millimeters) in diameter.
3. The holes shall be round and drilled perpendicular to the surface. The edges shall be free from burrs but shall not be chamfered.
4. Each penetrameter shall carry a lead identification number.
5. The tolerances for penetrameter thickness and hole diameter shall be $\pm 10$ percent or one-half the thickness increment between penetrameter sizes, whichever is smaller.

Figure 20 -Standard Penetrameter

## API 1104 PIPE LINE

CONTINUED

Table 5-Thickness of Pipe Versus Thickness of ASTM E 142 Penetrameter

| Pipe Wall or Weld Thickness |  | Maximum Penetrameter Thickness |  | Identifying Number |
| :---: | :---: | :---: | :---: | :---: |
| Inches | Millimeters | Inches | Millimeters |  |
| 0-1/4 | $0-6.35$ | 0.0125 | 0.317 | 12 |
| >1/2-1 | >6.35-9.52 | 0.015 | 0.381 | 15 |
| * $\%$ - 12 | >9.52-12.70 | 0.0175 | 0.444 | 17 |
| >1/2-\% | >12.70-19.05 | 0.020 | 0.508 | 20 |
| >\%-1 | >19.05-25.40 | 0.025 | 0.635 | 25 |
| >1-2 | >25.40-50.80 | 0.030 | 0.762 | 30 |

Table 7-Thickness of Pipe Versus Diameter of ASTM E 747 Wire Penetrameter

| Weld Thickness |  | Essential Weld Diameter |  | ASTM Set <br> Letter |
| :--- | :--- | :--- | :---: | :---: |
| Inches |  | Millimeters | Inches | Millimeters |

## API 5L

API 5L specifies the use of I.Q.I.'s conforming to "figure 6" as shown below. I.Q.I. selection is determined by the set of requirements to be used as shown in tables 14 , and 15 .


Notes:

1. The diameter of each hole shall be $1 / 16 \mathrm{in}$. $(1.6 \mathrm{~mm})$.
2. Holes shall be round and drilled perpendicular to the surface.
3. Holes shall be free of burrs, but edges shall not be chamfered.
4. Each penetrameter shall carry a lead identification number as given in Tables 14 and 15.

Figure 6-API Standard Penetrameter

Table 14-API Standard 4 Percent Penetrameters

| (1) |  | (2) |  | (3) | - | (4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wall Thickness |  |  |  | Maximum Penetrameter Thickness |  | Identifying Number |
| Over |  | Through |  |  |  |  |
| in. | mm | in. | mm | in. | mm |  |
| $3 / 16$ or 0.188 | (4.8) | $1 / 4$ or 0.250 | (6.4) | 0.010 | (0.25) | 10 |
| $1 / 4$ or 0.250 | (6.4) | $3 / 16$ or 0.313 | (7.9) | 0.0125 | (0.32) | 12 |
| $5 / 16$ or 0.313 | (7.9) | $3 / 8$ or 0.375 | (9.5) | 0.015 | (0.38) | 15 |
| $3 / 8$ or 0.375 | (9.5) | $7 / 16$ or 0.438 | (11.1) | 0.0175 | (0.45) | 17 |
| $7 / 16$ or 0.438 | (11.1) | $1 / 2$ or 0.500 | (12.7) | 0.020 | (0.51) | 20 |
| $1 / 2$ or 0.500 | (12.7) | $5 / 8$ or 0.625 | (15.9) | 0.025 | (0.64) | 25 |
| $5 / 8$ or 0.625 | (15.9) | $3 / 4$ or 0.750 | (19.1) | 0.030 | (0.76) | 30 |
| $3 / 4$ or 0.750 | (19.1) | 1 or 1.000 | (25.4) | 0.040 | (1.02) | 40 |
| 1 or 1.000 | (25.4) | $1 \frac{1}{4}$ or 1.250 | (31.8) | 0.050 | (1.27) | 50 |
| $1 \frac{1}{4}$ or 1.250 | (31.8) | $1 \frac{1}{2}$ or 1.500 | (38.1) | 0.060 | (1.52) | 60 |

Table 15-API Standard 2 Percent Penetrameters

| (1) |  | (2) |  |  | (3) |  | (4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wall Thickness |  |  |  |  | Maximum Penetrameter Thickness |  | Identifying Number |
| Over |  | Through |  |  |  |  |  |
| in. | mm | in. |  | mm | in. | mm |  |
| $7 / 32$ or 0.219 | (5.1) | $1 / 4$ or | 0.250 | (6.4) | 0.005 | (0.13) | 5 |
| $1 / 4$ or 0.250 | (6.4) | 5/16 or | 0.313 | (7.9) | 0.006 | (0.15) | 6 |
| $5 / 16$ or 0.313 | (7.9) | $3 / 8$ or | 0.375 | (9.5) | 0.0075 | (0.19) | 7 |
| $3 / 8$ or 0.375 | (9.5) | $1 / 2$ or | 0.500 | (12.7) | 0.010 | (0.25) | 10 |
| $1 / 2$ or 0.500 | (12.7) | $5 / 8$ or | 0.625 | (15.9) | 0.0125 | (0.32) | 12 |
| $5 / 8$ or 0.625 | (15.9) | $3 / 4$ or | 0.750 | (19.1) | 0.015 | (0.38) | 15 |
| $3 / 4$ or 0.750 | (19.1) | $7 / 8$ or | 0.875 | (22.2) | 0.0175 | (0.45) | 17 |
| 7/8 or 0.875 | (22.2) | 1 or | 1.000 | (25.4) | 0.020 | (0.51) | 20 |
| 1 or 1.000 | (25.4) | $1 \frac{1}{4}$ or | 1.250 | (31.8) | 0.025 | (0.64) | 25 |
| $1 \frac{1}{4}$ or 1.250 | (31.8) | $1 \frac{1}{2}$ or | 1.500 | (38.1) | 0.030 | (0.76) | 30 |

## API 5L <br> CONTINUED

## WIRE I.Q.I.'s (EN TYPE)

Wire type IQI selection is determined by the requirements of tables 16, and 17 .


API 650
AWS D1.1-96
AWWA D100-96
API 650 (TENTH EDITION: NOVEMBER 1998); AWS D1.1-96; AWWA D100-96 specify that the radiographic method employed shall be in accordance with ASME Sec. V, article 2.

## WIRE TYPE I.Q.I.'S <br> ASTM E 747-97

Accepted by ASME V and AWS as an alternative to plaque type I.Q.I. 's. These I.Q.I.'s are encapsulated in vinyl for durability. Available in 4 sizes (Sets A, B, C, and D) in Aluminum, Copper, and Stainless Steel. Also available in Sets A and B are Inconel and Titanium.

ASTM-E-747 wire type I.Q.I.'s are manufactured with 6 wires in each size, as shown in the table below.


Each size I.Q.I covers a range of thicknesses for which it is used, based on a standard 2 T level of inspection.

> I.Q.I. SIZE
> SFT A
> SET B
> SET C
> SET D

THICKNESS RANGE
.25 Thriu 75 IN
. 75 Thru 1.7 IN .
1.7 Thru 4.0 IN.
4.0 Thru 10.0 IN

ASTM-E-747 I.Q.I.'s are available in four styles as shown.


STYLE 1 and STYLE 2 carry the same designation as "Alternate 1 " and "Alternate 2 " respectively as shown in the ASTM Book of Standards

## EN 462-1 WIRE TYPE I.Q.I.'S

Published by European committee for standardization; EN-462- 1 replaces DIN 54.109. Based on a series of wire diameters, subdivided into ranges of 7 wires. The lead symbol identifies the largest wire, material and "EN" specification.

EN 462-1 I.Q.I.'s are available in STEEL, ALUMINUM, and COPPER in sizes $1 \mathrm{EN}, 6 \mathrm{EN}, 10 \mathrm{EN}$, and 13 EN , and TITANIUM in sizes 6 EN and 10 EN .

| 1 EN |  |  | 6EN |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WIRE \# | WIRE | WIRE | WIRE \# | WIRE | WIRE |
|  | DIAM. mm | DIAM in. |  | DIAM. mm | DIAM in. |
| 1 | 3.20 | . 1259 | 6 | 1.00 | . 0393 |
| 2 | 2.50 | . 0984 | 7 | 0.80 | . 0315 |
| 3 | 2.00 | . 0787 | 8 | 0.63 | . 0248 |
| 4 | 1.60 | . 0629 | 9 | 0.50 | . 0196 |
| 5 | 1.25 | . 0492 | 10 | 0.40 | . 0157 |
| 6 | 1.00 | . 0393 | 11 | 0.32 | . 0126 |
| 7 | 0.80 | . 0315 | 12 | 0.25 | . 0098 |
| 10 EN |  |  | 13 EN |  |  |
| WIRE \# | WIRE | WIRE | WIRE \# | WIRE | WIRE |
|  | DIAM. mm | DIAM in. |  | DIAM. mm | DIAM in. |
| 10 | 0.40 | . 0157 | 13 | 0.20 | . 0078 |
| 11 | 0.32 | . 0126 | 14 | 0.16 | . 0063 |
| 12 | 0.25 | . 0098 | 15 | 0.13 | . 0049 |
| 13 | 0.20 | . 0078 | 16 | 0.10 | . 0039 |
| 14 | 0.16 | . 0063 | 17 | 0.08 | . 0031 |
| 15 | 0.13 | . 0049 | 18 | 0.063 | . 0024 |
| 16 | 0.10 | . 0039 | 19 | 0.05 | . 0019 |



IQI SIZE
1 FN
6 EN
10 EN
13 EN

## THICKNESS RANGE

| 40 | thru | 160 mm | 1.6 | thru | 6.0 in. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12.5 | thru | 50 mm | .50 | thru | 2.0 in. |
| 5.0 | thru | 20 mm | .20 | thru | .75 in. |
| 2.5 | thru | 10 mm | .10 | thru | .40 in. |

## PRATT \& WHITNEY I.Q.I.'S

Pratt \& Whitney specifies the use of two classifications of I.Q.I. 's under the XRM document: TAM specs, and ASTM-E-1742.

TAM specs are tool numbers assigned to I.Q.I.'s with a true $2 \%$ sensitivity, for use on material sections under .2". TAM specs contain detail numbers, each one representing a specific I.Q.I. thickness. Additionally, TAM specs contain an AMS number, which specifies the material of the I.Q.I.

ASTM-E- 1742 is used for all materials, for use on sections from .05 " and up with a minimum IQI thickness of .005 ". For materials not covered by a TAM number, ASTM-E-1742 can be made to true $2 \%$ thickness. Specify when ordering, otherwise the standard .005 " minimum thickness applies.

## TAM SPECS FOR I.Q.I.'S:

| TAM \# | MATERIAL | AMS \# |
| :--- | :--- | :--- |
| 108533 | Stainless Steel | 640 |
| 140607 | 6AL/4V Titanium | 4928 |
| 142937 | Hastelloy X | 5754 |
| 142401 | Haynes 25 | 5759 |

## COMMON MATERIALS COVERED UNDER ASTM-E-1742 IN ADDITION TO THOSE LISTED ABOVE:

| MATERIAL | AMS \# |
| :--- | :--- |
| 2024 Aluminum | 4120 |
| ZK60 Magnesium | 4352 |
| Waspaloy | 5706 |

## MATERIAL VERIFICATION:

Pratt \& Whitney's XRM document specifies the requirement for dimensional and alloy verification. RAY-CHECK MFG. (RCM) verifies dimensions and issues an analytical report with I.Q.I.'s. RCM performs alloy verification in accordance with PWA MCL Sec. F-53 (thermo-electric testing).

Material certifications accompany alloy verification document.
Aluminum and Magnesium alloys are sent out for semi-quantitative spectrographic analysis in accordance with PWA MCL Sec. F-23 and F-54.

## PRATT \& WHITNEY MOUNTING BLOCKS

Pratt \& Whitney specifies the use TAM specs to which mounting blocks shall conform. TAM specs are tool numbers assigned to mounting blocks. TAM specs contain detail numbers, each one representing a specific mounting block thickness. Additionally, TAM specs contain an AMS number, which specifies the material of the mounting block.

## TAM SPECS FOR MOUNTING BLOCKS:

TAM \#
97734
97735
97736
97737
101017
101018
142401

## MATERIAL

2024 Aluminum
ZK60 Magnesium 4352
6AL/4V Titanium 4928
303 Stainless 5640
Waspaloy 5706
Hastelloy X 5754
Haynes 255759

## MATERIAL VERIFICATION:

Pratt \& Whitney's XRM document specifies the requirement for dimensional and alloy verification. RAY-CHECK MFG (RCM) verifies dimensions and issues an analytical report with mounting blocks. RCM performs alloy verification in accordance with PWA MCL Sec. F-53 (thermo-electric testing). Material certifications accompany alloy verification document.

Aluminum and Magnesium alloys are sent out for semi-quantitative spectrographic analysis in accordance with PWA MCL sec. F-23 and F-54.

## PRATT \& WHITNEY STEP WEDGES

Pratt \& Whitney's XRM document specifies step wedges conforming to TAM specs. TAM specs are tool numbers assigned to step wedges specifying material, width and length of the step wedge, step width, and step thicknesses.

## DETAILS:

NUMBER OF STEPS:

```
7
```

WIDTH (OVERALL):
$21 / 4 "$
LENGTH (OVERALL): 3 15/16"
STEP WIDTH:
STEP THICKNESSES: 9/16" .050", .075", . 100", . 125", .150", .200", .250"

## TAM SPECS FOR STEP WEDGES:

TAM \#
142395
142396
142398
142399
142939

MATERIAL
6AL/4V Titanium 303 Stainless 5640
Waspaloy 5706
Haynes 255759
Hastelloy X 5754

## MATERIAL VERIFICATION:

Pratt \& Whitney's XRM document specifies the requirement for dimensional and alloy verification. RAYCHECK MFG. (RCM) verifies dimensions and issues an analytical report with step wedges. RCM performs alloy verification in accordance with PWA MCL Sec. F-53 (thermo-electric testing). Material certifications accompany alloy verification document.

Aluminum and Magnesium alloys are sent out for semi-quantitative spectrographic analysis in accordance with PWA MCL Sec. F-23 and F-54.

## PRATT \& WHITNEY X-RAY DENSITY COMPARISON GAGE TAM 169526

## GEOMETRY: $1.0^{\prime \prime} \times 3.0^{\prime \prime} \times .100{ }^{\prime \prime}$

Contains a series of $12,1 / 16^{\prime \prime}$ diameter flat bottom holes from $.005^{\prime \prime}$ to $.060^{\prime \prime}$ deep. Normally manufactured from $6 \mathrm{AL} / 4 \mathrm{~V}$ Titanium, or 410 Stainless. Tool and hole numbers are permanently engraved. Mahogany case included.

## CONTRAST SENSITIVITY GAGES <br> ASTM E 1647

Used in conjunction with a high contrast resolution measuring gage such as a DUPLEX WIRE IMAGE QUALITY INDICATOR (EN 462 PART 5); Contrast Sensitivity Gages measure contrast sensitivity independent of the imaging system spatial resolution limitations.

Contrast Sensitivity Gages are manufactured with four precision thickness recesses representing the four levels of contrast sensitivity to be measured-1, 2,3 and $4 \%$ as shown in figure 1 below. Contrast sensitivity gages are designed with four gage sizes. As tables 1, 2, and 3 indicate, each gage size covers a range of thicknesses.


FIG. 1 General Layout of the Contrast Sensitivity Gage


TABLE 3 Contrast Sensitivity Gage Application

| Gage Size | Use on Thicknesses |
| :---: | :--- |
| 1 | Up to $1.5 \mathrm{in} .(38.1 \mathrm{~mm})$ |
| 2 | Over $1.5 \mathrm{in} .(38.1 \mathrm{~mm})$ to $3.0 \mathrm{in} .(76.2 \mathrm{~mm})$ |
| 3 | Over $3.0 \mathrm{in} .(76.2 \mathrm{~mm})$ to $6.0 \mathrm{in} .(152.4 \mathrm{~mm})$ |
| 4 | Over $6.0 \mathrm{in} .(152.4 \mathrm{~mm})$ |

Contrast sensitivity gages can be manufactured from in the following materials:

| Magnesium | Group 03 |
| :--- | :--- |
| Aluminum | Group 02 |
| Titanium | Group 01 |
| Steel or Stainless Steel (300 SERIES) | Group 1 |
| Aluminum Bronze Alloy \#623 OR \#630 | Group 2 |
| NI-CR-FE (Inconel 600) | Group 3 |
| 70 to 30 Nickel Copper (Monel) or | Group 4 |
| 70 to 30 Copper Nickel (CU-NI) | Group 4 |
| Tin Bronze Alloy D of B 139 | Group 5 |

## MOUNTING BLOCKS

Mounting blocks are used when it is impractical to place the I.Q.I. directly on the object being radiographed. Most codes specify that a mounting block of the same material and thickness be placed, with the I.Q.I., adjacent to the part in such a manner that it will show clearly on the radiograph. Standard mounting blocks are supplied in sizes corresponding with IQI sizes.

## GENERAL DIMENSIONS:

Sizes up to $21 / 2^{\prime \prime}$ incl.
1.0" X 2 1/4"
Sizes over 2 1/2"
1 1/4" X 3.0"

These dimensions allow at least $1 / 8$ " clearance on three sides of the IQI.
Standard mounting blocks are available in the following materials:

| Steel | Magnesium |
| :--- | :--- |
| Brass | Stainless Steel |
| Aluminum | Copper |

Mounting blocks of other materials including, but not limited to, the following materials are made on order:

| Hastelloy X | Magnesium-Thorium |
| :--- | :--- |
| Monel | Cupro-Nickel |
| Inconel | AL/4V Titanium |
| Aluminum Bronze | Haynes 25 |

## SHIMS

3/4" X 2"
Some codes require that shims be placed under the I.Q.I. to compensate for the thickness of a backing ring or weld reinforcement. Shims are supplied in the same materials as I.Q.I. 's. They are usually available in increments of $1 / 16^{\prime \prime}$, from $1 / 16^{\prime \prime}$ thick thru $1.0^{\prime \prime}$. The general dimension ( $3 / 4$ " x 2 ") allows approximately $1 / 8^{\prime \prime}$ clearance on each side of the I.Q.I. they are to be used with. Material and thickness is marked on each shim.

NOTE:
"SHIMS" (3/4" X 2") ARE NOT TO BE USED FOR APPLICATIONS REQUIRING CONFORMANCE TO ASTM-E- 1742 (formerly MIL-STD-453).

## COMPARATOR SHIMS <br> (SLOTTED SHIMS)



## notes:

1. Top and bottom surfaces of shims to de parallel within $\pm .001$ of an inch.

2: The -bottom surfaces of the slots must be parallel to the bottom surface of the shim within $\pm .001$ of an inch.
3. All fractional dimensions to be within $\pm 1 / 6^{\circ}$.

## STEP WEDGES

Step wedges are used for the calibration of X-RAY machines and evaluation of techniques. Additionally, when an object with varying thicknesses is radiographed a step wedge of the same material, incorporating the same thicknesses, may often be advantageously used. By placing an IQI on each step, and including the step wedge in the radiograph, the sensitivity may be suitably determined for each thickness.

Standard step wedges, $1^{\prime \prime}$ high and $2^{\prime \prime}$ or $21 / 4^{\prime \prime}$ wide, with 4,8 , or 16 steps are manufactured in all standard materials and are available for prompt delivery. Step wedges of other materials and alloys are made on order. Delivery is within two weeks.

## GENERAL DIMENSIONS:

|  | $\mathbf{4}$ STEPS | $\mathbf{8}$ STEPS | $\mathbf{1 6}$ |
| :--- | :---: | :---: | :---: |
| Sten Height: | $.250 " \prime$ | $.125 " \prime$ | $.060^{\prime \prime}$ |
| Step Width: | $.750^{\prime \prime}$ | $.750^{\prime \prime}$ | $.500^{\prime \prime}$ |
| Step Wedge Length | $3.000^{\prime \prime}$ | $6.000^{\prime \prime}$ | $8.000^{\prime \prime}$ |

## SPECIAL STEP WEDGES

Step wedges, with a continuous series of steps, to any height and width are manufactured to customers' specifications. Descriptions or drawings must include the width and length of the step wedge, step dimensions, total number of steps, and total height of the step wedge.


## RISER BLOCKS

Step wedge blocks (riser blocks) increase the effective thickness of the step wedge. The general dimensions correspond with the step wedge for which it is to be used, and the block is 1.0 " thick.

## LEAD NUMBERS AND LETTERS

RAY-CHECK MFG. (RCM) precision lead numbers and letters are clean with sharp smooth edges, and produce clear, well defined images. All types shown below are available in letters A - Z, and numbers $0-9$. Immediate delivery from factory stock. Samples available on request. Arrows and decimals are also available.


RCM also offers 36 compartment lead figure cases made of heavy duty plastic.

| SIZE | TYPE | THICKNESS | SIZE | TYPE | THICKNESS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1/8" | Flat Face | .020" - .025" | 1/4" | Deed Block | 5/64" |
| 3/16" | Flat Face | .035" - .040" | 3/8" | Deep Block | 5/64" |
| 1/4" | Flat Face | 3/64" | 1/2" | Deep Block | 5/64" |
| 3/8" | Flat Face | 3/64" | 3/4" | Deep Block | 3/32" |
| 1/2" | Flat Face | 1/16" | $1 "$ | Deep Block | 1/8" |
| 5/8" | Flat Face | 1/16" |  |  |  |
| 1/4" | Arrows | .030" - .040" | 1/2" | Industrial | 1/4" |
| 1/2" | Arrows | 1/16" | 3/4" | Industrial | 1/4" |
| 5/8" | Arrows | 1/16" | $1 "$ | Industrial | 1/4" |
| $1{ }^{\prime \prime}$ | Arrows | 1/16" |  |  |  |
| $11 / 4 "$ | Arrows | 3/32" |  |  |  |
| $11 / 2^{\prime \prime}$ | Arrows | 3/32" |  |  |  |

NOTE: Thicknesses listed are approximate, some variances occur due to the nature of casting.


[^0]:    ${ }^{\text {a }}$ See Figure 20.

